Fill in the box using the given information. 1.

Value of a and b	Value of $\sqrt{a} \cdot \sqrt{b}$	Value of \sqrt{ab}
a=4,b=9		
a = 9,b = 16		
a = 25,b = 4		
a = 16, b = 36		
a = 3,b = 8		

2. Simplify each radical as much as possible.

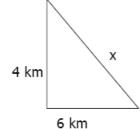
b. $\sqrt{36}$ _____ c. $\sqrt{-4}$ ____ d. $\sqrt{4.7}$ ____

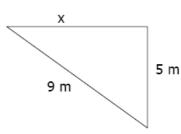
f. $\sqrt{x^2}$

g. $\sqrt{100x^2}$ _____ h. $\sqrt{90}$ _____

3. Solve the equation for x.

a.


$$\sqrt{x}-2=13$$


$$\sqrt{x} - 2 = 13$$
 b. $8\sqrt{x} - 24 = 0$ c. $\sqrt{2x - 1} = 7$

$$\sqrt{2x-1}=7$$

Use the Pythagorean Theorem to find the missing side length. ($a^2 + b^2 = c^2$) 4.

α.

Use the distance formula and midpoint formula to calculate the following values.

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

- 5. Find the distance between the two points
 - a. (-6,3),(-4,2)

b. (2,4),(5,6)

- 6. Find the midpoint of the line segment with the given endpoints.
 - a. (5,3),(7,11)

b. (2,-4),(8,4)

7. The distance d between two points is given. Find the missing value, x.

 $\left(x,4\right),\left(2,-1\right)...distance between those two points is <math display="inline">5$